National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Separation of Azaarenes by High Performance Liguid Chromatography
Kočí, Kamila ; Friedl, Zdeněk (referee) ; Večeřa, Zbyněk (referee) ; Ventura, Karel (referee) ; Šimek, Zdeněk (advisor)
Under the framework of this PhD project, a study on chromatographic behaviour of selected azaarenes on octadecylsilica stationary phases during their separation by reversed phase liquid chromatography was developed. The main goal was aimed at an application of the basic RPLC principles on the retention behaviour of azaarenes including the effects such as peak tailing, peak broadening, irreproducible retention or strong retention on a stationary phase. This study was particularly focused on basic azaarenes, also called acridines, which belong to a group of persistent organic pollutants providing mutagenic and/or carcinogenic activity. The retention patterns were studied on a group of eight acridines that are often present in environmental samples polluted with polycyclic aromatic compounds. The mixture of acridines was separated under isocratic elution conditions on three octadecylsilica stationary phases using two different binary mixtures as a mobile phase. Evaluation of the surface properties of the selected stationary phases was firstly performed, followed by the separation experiments. The structure of the experiments was designed to evaluate the effect of three different factors on the retention behaviour of acridines: properties of a stationary phase, composition of a mobile phase and physical-chemical properties of acridines. The treatment of the results was based on the capacity factor values providing the best fitting and repeatability of data, but other parameters that evaluate thermodynamic and kinetic aspects of the separation process were also given. Simple correlations between the three factors and a character of retention mechanism of acridines on the given separation system were found. Application of this knowledge simplifies an optimisation process and helps to solve common separation problems for acridines, but also for other basic analytes displaying similar physical-chemical properties (Mr and pKa).
Separation of Azaarenes by High Performance Liguid Chromatography
Kočí, Kamila ; Friedl, Zdeněk (referee) ; Večeřa, Zbyněk (referee) ; Ventura, Karel (referee) ; Šimek, Zdeněk (advisor)
Under the framework of this PhD project, a study on chromatographic behaviour of selected azaarenes on octadecylsilica stationary phases during their separation by reversed phase liquid chromatography was developed. The main goal was aimed at an application of the basic RPLC principles on the retention behaviour of azaarenes including the effects such as peak tailing, peak broadening, irreproducible retention or strong retention on a stationary phase. This study was particularly focused on basic azaarenes, also called acridines, which belong to a group of persistent organic pollutants providing mutagenic and/or carcinogenic activity. The retention patterns were studied on a group of eight acridines that are often present in environmental samples polluted with polycyclic aromatic compounds. The mixture of acridines was separated under isocratic elution conditions on three octadecylsilica stationary phases using two different binary mixtures as a mobile phase. Evaluation of the surface properties of the selected stationary phases was firstly performed, followed by the separation experiments. The structure of the experiments was designed to evaluate the effect of three different factors on the retention behaviour of acridines: properties of a stationary phase, composition of a mobile phase and physical-chemical properties of acridines. The treatment of the results was based on the capacity factor values providing the best fitting and repeatability of data, but other parameters that evaluate thermodynamic and kinetic aspects of the separation process were also given. Simple correlations between the three factors and a character of retention mechanism of acridines on the given separation system were found. Application of this knowledge simplifies an optimisation process and helps to solve common separation problems for acridines, but also for other basic analytes displaying similar physical-chemical properties (Mr and pKa).

Interested in being notified about new results for this query?
Subscribe to the RSS feed.